343 research outputs found

    Microfluidic Mixing: A Review

    Get PDF
    The aim of microfluidic mixing is to achieve a thorough and rapid mixing of multiple samples in microscale devices. In such devices, sample mixing is essentially achieved by enhancing the diffusion effect between the different species flows. Broadly speaking, microfluidic mixing schemes can be categorized as either “active”, where an external energy force is applied to perturb the sample species, or “passive”, where the contact area and contact time of the species samples are increased through specially-designed microchannel configurations. Many mixers have been proposed to facilitate this task over the past 10 years. Accordingly, this paper commences by providing a high level overview of the field of microfluidic mixing devices before describing some of the more significant proposals for active and passive mixers

    A Microcantilever-based Gas Flow Sensor for Flow Rate and Direction Detection

    Get PDF
    The purpose of this paper is to apply characteristics of residual stress that causes cantilever beams to bend for manufacturing a micro-structured gas flow sensor. This study uses a silicon wafer deposited silicon nitride layers, reassembled the gas flow sensor with four cantilever beams that perpendicular to each other and manufactured piezoresistive structure on each micro-cantilever by MEMS technologies, respectively. When the cantilever beams are formed after etching the silicon wafer, it bends up a little due to the released residual stress induced in the previous fabrication process. As air flows through the sensor upstream and downstream beam deformation was made, thus the airflow direction can be determined through comparing the resistance variation between different cantilever beams. The flow rate can also be measured by calculating the total resistance variations on the four cantilevers.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty

    Get PDF
    BACKGROUND: Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. METHODS: The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. RESULTS: The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). CONCLUSIONS: Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost

    Experimental and Numerical Analysis of High-Resolution Injection Technique for Capillary Electrophoresis Microchip

    Get PDF
    This study presents an experimental and numerical investigation on the use of high-resolution injection techniques to deliver sample plugs within a capillary electrophoresis (CE) microchip. The CE microfluidic device was integrated into a U-shaped injection system and an expansion chamber located at the inlet of the separation channel, which can miniize the sample leakage effect and deliver a high-quality sample plug into the separation channel so that the detection performance of the device is enhanced. The proposed 45° U-shaped injection system was investigated using a sample of Rhodamine B dye. Meanwhile, the analysis of the current CE microfluidic chip was studied by considering the separation of Hae III digested ϕx-174 DNA samples. The experimental and numerical results indicate that the included 45° U-shaped injector completely eliminates the sample leakage and an expansion separation channel with an expansion ratio of 2.5 delivers a sample plug with a perfect detection shape and highest concentration intensity, hence enabling an optimal injection and separation performance

    Trajectory of low-density lipoprotein cholesterol in patients with chronic kidney disease and its association with cardiovascular disease

    Get PDF
    BackgroundThe role of longitudinal temporal trends in LDL-C in cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) and diabetes is unclear. This study categorized the long-term LDL-C trajectory and determined its association with the incidence of atherosclerotic CVD in patients with CKD according to diabetes status and estimated glomerular filtration rate (eGFR).MethodsThe risk of atherosclerotic CVD was estimated in 137,127 Taiwanese patients with CKD using six LDL-C trajectory classes determined by the latent class mixed model as optimal, near optimal, above optimal, borderline, sustained high, and declined high over 5 years.ResultsThe risk of CVD was higher in the sustained high LDL-C [&gt;160 mg/dL over time; adjusted hazard ratio (aHR) = 1.68, 95% CI = 1.45–1.94], declined high LDL-C (&gt;160 to &lt;100 mg/dL; aHR = 1.23, 95% CI = 1.11–1.38), and borderline LDL-C (approximately 140 mg/dL over time; aHR = 1.16, 95% CI = 1.07–1.26) groups than in the optimal LDL-C group (&lt;100 mg/dL over time). There was no such association in patients with an eGFR &lt;15 mL/min/1.73 m2. Persistent diabetes was associated with a 1.15–2.47-fold increase in CVD in patients with high LDL-C (&gt;120 mg/dL).ConclusionThe LDL-C trajectory pattern was associated with the phenotype of CVD risk. The degree of risk varied according to eGFR and diabetes status. A stable low LDL-C over time was potentially beneficial for prevention of CVD. Intensive lipid management and periodic assessment of LDL-C is essential to reduce the risk of CVD in patients with CKD and diabetes

    A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer

    Get PDF
    In the study, a MEMS-based benzene gas sensor is presented, consisting of a quartz substrate, a thin-film WO3 sensing layer, an integrated Pt micro-heater, and Pt interdigitated electrodes (IDEs). When benzene is present in the atmosphere, oxidation occurs on the heated WO3 sensing layer. This causes a change in the electrical conductivity of the WO3 film, and hence changes the resistance between the IDEs. The benzene concentration is then computed from the change in the measured resistance. A specific orientation of the WO3 layer is obtained by optimizing the sputtering process parameters. It is found that the sensitivity of the gas sensor is optimized at a working temperature of 300 °C. At the optimal working temperature, the experimental results show that the sensor has a high degree of sensitivity (1.0 KΩ ppm−1), a low detection limit (0.2 ppm) and a rapid response time (35 s)

    Design and Analysis of Impedance Pumps Utilizing Electromagnetic Actuation

    Get PDF
    This study designs and analyzes an impedance pump utilizing an electromagnetic actuator. The pump is designed to have three major components, namely a lower glass substrate patterned with a copper micro-coil, a microchannel, and an upper glass cover plate attached a magnetic PDMS diaphragm. When a current is passed through the micro-coil, an electromagnetic force is established between the coil and the magnetic diaphragm. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. In performing the analysis, simulated models of the magnetic field, the diaphragm displacement and the flow rate are developed using Ansoft/Maxwell3D, ANSYS FEA and FLUENT 6.3 CFD software, respectively. Overall, the simulated results reveal that a net flow rate of 52.8 μL/min can be obtained using a diaphragm displacement of 31.5 μm induced by a micro-coil input current of 0.5 A. The impedance pump proposed in this study provides a valuable contribution to the ongoing development of Lab-on-Chips (LoCs) systems
    corecore